One of my favorite things about the uncertainty principle is that it’s named after Heisenberg even though he kinda got the math wrong. The idea was still mostly right though, just needed to adjust some terms and stop conflating fundamental uncertainty with observer effects, since they’re technically distinct.

The Heisenberg Uncertainty Principle is one of the cornerstones of quantum mechanics. In his original paper on the subject, Heisenberg wrote “At the instant of time when the position is determined, that is, at the instant when the photon is scattered by the electron, the electron undergoes a discontinuous change in momentum. This change is the greater the smaller the wavelength of the light employed, i.e., the more exact the determination of the position” [1]. Here Heisenberg was following Einstein’s example and attempting to base a new physical theory only on observable quantities, that is, on the results of measurements. The modern version of the uncertainty principle proved in our textbooks today, however, deals not with the precision of a measurement and the disturbance it introduces, but with the intrinsic uncertainty any quantum state must possess, regardless of what measurement (if any) is performed [2–4]. These two readings of the uncertainty principle are typically taught side-by-side, although only the modern one is given rigorous proof. It has been shown that the original formulation is not only less general than the modern one – it is in fact mathematically incorrect [5]. Recently, Ozawa proved a revised, universally valid, relationship between precision and disturbance [6], which was indirectly validated in [7]. Here, using tools developed for linear-optical quantum computing to implement a proposal due to Lund and Wiseman [8], we provide the first direct experimental characterization of the precision and disturbance arising from a measurement, violating Heisenberg’s original relationship.

Rozema, L. A.; Darabi, A.; Mahler, D. H.; Hayat, A.; Soudagar, Y.; Steinberg, A. M. (2012). “Violation of Heisenberg’s Measurement–Disturbance Relationship by Weak Measurements“. Physical Review Letters.

Worth repeating: Violating the original relationship is not the same as violating the uncertainty principle, which has since been updated, as mentioned by the authors.

### Like this:

Like Loading...

*Related*

## Leave a Reply